High Prevalence of Multistability of Rest States and Bursting in a Database of a Model Neuron

نویسندگان

  • Bóris Marin
  • William H. Barnett
  • Anca Doloc-Mihu
  • Ronald L. Calabrese
  • Gennady S. Cymbalyuk
چکیده

Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance (g(leak)) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of g(leak). We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of Phase-Locked Bursting in Inhibitory Neuron Networks

Networks of neurons, which form central pattern generators (CPGs), are important for controlling animal behaviors. Of special interest are configurations or CPG motifs composed of reciprocally inhibited neurons, such as half-center oscillators (HCOs). Bursting rhythms of HCOs are shown to include stable synchrony or in-phase bursting, which is a phase-locked state that has zero phase difference...

متن کامل

Spikes matter for phase-locked bursting in inhibitory neurons.

We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. E 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike intera...

متن کامل

Six Types of Multistability in a Neuronal Model Based on Slow Calcium Current

BACKGROUND Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by excitable systems such as neurons and cardiac cells. Multistability can play functional roles in short-term memory and maintaining posture. It seems to pose an evolutionary advantage for neurons which are part of multifunctional Central Pattern Generators to possess multistability. The mechanisms...

متن کامل

Multistability and Infinite Cycles in a Model of the Leech Heart Interneuron

We argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with noncentral homoclinics explains the effect of bi-stability observed in a neuron model based on a HodgkinHuxley formalism. In this model the dominating regime, depending on the initial state, can be either spiking oscillations or weakly irregular bursting ones. It is also shown how the bifurcation of the blue-s...

متن کامل

A Gray-Box Neural Network Model of Parkinson’s Disease Using Gait Signal

In this study, we focused on the gait of Parkinson’s disease (PD) and presented a gray box model for it. We tried to present a model for basal ganglia structure in order to generate stride time interval signal in model output for healthy and PD states. Because of feedback role of dopamine neurotransmitter in basal ganglia, this part is modelled by “Elman Network”, which is a neural network stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013